ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY

Tutorial: Embedded System Design for Zynq™ SoC RECRLAB@OU

Using Direct Memory Access (DMA)

OBJECTIVES

= Transfer data between memory regions as well as between memory and a custom peripheral with the DMA Controller inside
the PS (SDK 2019.1).

Use the AXI4-Full Pixel Processor Peripheral (from Unit 4 or Unit 7) to test DMA transfers.
Learn to develop software routines for DMA Transfers with interrupts and test on ZYBO or ZYBO Z7-10 Board.

DMA CONTROLLER - DOCUMENTATION
= UGb85: Zyng-7000 AP SoC Technical Reference Manual.

= SDK: Go to system.mss — Peripheral Drivers — ps7 dma s — Import Examples. You can import the file

xdmaps_example w_intr.c. The software routine in this tutorial is based on this file.

DMA Test

= The test project is the AXI-4 Full Pixel Processor peripheral (Unit 4 or Unit 7). If using the example of Unit 7, open the Vivado

embedded system and use the associated bitstream (the one not created by the Partial Reconfiguration flow).

= Pixel Processor: The circuit, written in VHDL, processes NC NI-bit pixels in parallel and outputs NC NO-bit pixels. We set

NC=4, NI=NO=8 in this test. Also, we use the default parameter rF=1.
= The following four transfers are carried out, one after the other. The DMA Length is in 32-bit words.

Transfer type DMA Length | Channel | Source Data Notes
Memory to Memory 1024 0 1024 down to 1 | Any Channel can be used.
Memory to Memory 1024 0 0to 1023 Char_mel_ O.'S re-used by first
making it idle.
OxDEADBEEF | Channel 1. We write data onto the
; 0xBEBEDEAD | Pixel Processor.
Memory to AXI-4 Full Peripheral 4 1 0xFADEBEAD
0xCAFEBEDF
OxEED2DDE7 Channel 2. We retrieve data from
: OxDDDDEED2 | the Pixel Processor.
AXI-4 Full Peripheral to Memory 4 2 0xFDEEDDD2
0xE3FFDDEF
32 bits 32 bits 32 bits 32 bits
<> «— >
—] —] ——] —
S| 1024 1024 St ol 0
1023 < 1023 1 < 1
(o] (o]
. o . . o .
i D i :
1 1 1023 1023
Dst Ui Dst 0
1023 « 1
; S ;
DMA TRANSFER 1 - DMA TRANSFER 2
1 1023
32 bits 32 bits 32 bits 32 bits
«—> «—>
—— —~—— Pixel Processor pee——~—1 —~—
Src__ |loxDEADBEEF Base Address o, FED2DDF7
OxBEBEDEAD 0OxDDDDEED2
0OxFADEBEAD OxFDEEDDD2
O0xCAFEBEDF 0xE3FFDDEF
Pixel Processor :
- Addrei) OXDEADBEEF DL) OXEED2DDF7
OxBEBEDEAD 0XDDDDEED2
DMA TRANSFER 3 O0xFADEBEAD DMA TRANSFER 4 |0xFDEEDDD2
~——\ OXCAFEBEDF N\ OXE3FFDDEF
/\/\ /\/\

Daniel Llamocca

1024

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
Tutorial: Embedded System Design for Zynq™ SoC RECRLAB@OU

For a list of available commands, see the file xdmaps.h in the bsp: /1libsrc/dmaps v2 1/src.

We need to specify a variable of type XxDmaPs Cmd. We then clear all the fields of the variable and fill them up with

information such as Source Address, Destination Address, DMA Length.

To start a DMA Transfer, we use the command xDmaPs Start.

To indicate the completion of a DMA transaction, the DMAC issues interrupts: DMA Done Interrupt (0-7) and DMA Fault

Interrupt. Each Interrupt has its associated Interrupt Service Routine (ISR). For a tutorial on Interrupts, see Unit 9.

v We first must connect the ISRs to the Generic Interrupt Controller (via xscuGic_Connect).

v We can execute a user-defined function inside an ISR. This needs to be specified before a DMA Transaction
(xpmaPs_start) by using the function xdmaPs_setDoneHandler, Where we indicate the DMA instance, the channel being
used (0-7), our callback function (e.g. pmaboneHandler) and our callback reference data (€.g.: Checked[8]).

v In the pmaDoneHandler function, we can specify the instructions we want to be executed once an interrupt hits.

For ease of explanation, we provide two examples:

v' After each DMA transaction, we wait a certain amount of time deemed sufficient for the DMA transfers to finish (e.g.:
printing via UART). This is a simple and inefficient method, but it is helpful to introduce DMA.

v" We use the DMA interrupt to detect the exact moment the DMA transactions ends. Every DMA channel (0-7) can issue a
‘done’ interrupt. This method is more efficient and it is the preferred method, though it requires significantly more lines
of code to set up and configure the interrupts.

PROCEDURE — NO INTERRUPTS (USING DELAY)

Open the Vivado project of the AXI-4 Full Pixel Processor peripheral (Unit 4 or Unit 7).

Open the SDK Project of the AXI-4 Full Pixel Processor peripheral.

Create a new SDK application.

v Go to New — Application Project. On Project Name, you can use: dma_test.

v" In Board Support Package (bsp): You can create a new one or use a previously generated one.

Copy the following files in the /src folder: pix dma.c.

Go to File — Generate Linker Script. If required, make sure to assign enough space in the heap/stack for the data. Also,
place the code/heap/stack section in DDR memory (the largest one).

Once the program is compiled, connect the ZYBO (or ZYBO Z7-10) Board to the USB port of your computer.

Download the bitstream on the PL: Xilinx Tools — Program FPGA.

Go to SDK Terminal and connect to the proper COM port.

Select the project dma_test. Right click and select Run As — Launch on Hardware (GDB).

Verification:

DMA Transfer 1: The program prints out destination data: bst [0] to Dst [1023]. It should match the Source data.
DMA Transfer 2: The program prints out destination data: Dst [0] to Dst [1023]. It should match the Source data.
DMA Transfer 3: Data is written into the Pixel Processor IP. This will be verified in DMA Transfer 4.

DMA Transfer 4: Data is retrieved from Pixel Processor IP. The program prints out destination data: Dst [0] to Dst [3].
It should match the output data from Pixel Processor (with F=1):

SNENENEN

Input | Output
O0xDEADBEEF OxEED2DDE7
O0xBEBEDEAD 0xDDDDEED2
O0xFADEBEAD 0xFDEEDDD2
O0xCAFEBEDF OxE3FFDDEF

PROCEDURE — USING DMA CHANNEL INTERRUPTS

Open the Vivado project of the AXI-4 Full Pixel Processor peripheral (Unit 4 or Unit 7).

Open the SDK Project of the AXI-4 Full Pixel Processor peripheral.

Create a new SDK application.

v" Go to New — Application Project. On Project Name, you can use: dma_test intr.

v In Board Support Package (bsp): You can create a new one or use a previously generated one.

Copy the following files in the /src folder: pix dma intr.c.

Go to File — Generate Linker Script. If required, make sure to assign enough space in the heap/stack for the data. Also,

place the code/heap/stack section in DDR memory (the largest one).

Once the program is compiled, connect the ZYBO Board to the USB port of your computer.

Download the bitstream on the PL: Xilinx Tools — Program FPGA.

Go to SDK Terminal and connect to the proper COM port.

Select the project dma_test intr. Right click and select Run As — Launch on Hardware (GDB).

Verification: This is a similar procedure to the one without interrupts.

v Before every transaction, we set Checked[Channel] = 0 and link the callback function pmaboneHandler and the
callback reference data Checked[8] to the respective ISR via the function XdmaPs SetDoneHandler.

v’ After every transaction, we use function wait doneint (Checked, Channel) to wait until the interrupt hits before
proceeding on to next instructions.

2 Daniel Llamocca

