
ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
Tutorial: Embedded System Design for ZynqTM SoC RECRLAB@OU

1 Daniel Llamocca

Using Direct Memory Access (DMA)

OBJECTIVES
▪ Transfer data between memory regions as well as between memory and a custom peripheral with the DMA Controller inside

the PS (SDK 2019.1).
▪ Use the AXI4-Full Pixel Processor Peripheral (from Unit 4 or Unit 7) to test DMA transfers.
▪ Learn to develop software routines for DMA Transfers with interrupts and test on ZYBO or ZYBO Z7-10 Board.

DMA CONTROLLER - DOCUMENTATION

▪ UG585: Zynq-7000 AP SoC Technical Reference Manual.
▪ SDK: Go to system.mss → Peripheral Drivers → ps7_dma_s → Import Examples. You can import the file

xdmaps_example_w_intr.c. The software routine in this tutorial is based on this file.

DMA TEST
▪ The test project is the AXI-4 Full Pixel Processor peripheral (Unit 4 or Unit 7). If using the example of Unit 7, open the Vivado

embedded system and use the associated bitstream (the one not created by the Partial Reconfiguration flow).
▪ Pixel Processor: The circuit, written in VHDL, processes NC NI-bit pixels in parallel and outputs NC NO-bit pixels. We set

NC=4, NI=NO=8 in this test. Also, we use the default parameter F=1.

▪ The following four transfers are carried out, one after the other. The DMA Length is in 32-bit words.

Transfer type DMA Length Channel Source Data Notes

Memory to Memory 1024 0 1024 down to 1 Any Channel can be used.

Memory to Memory 1024 0 0 to 1023
Channel 0 is re-used by first
making it idle.

Memory to AXI-4 Full Peripheral 4 1

0xDEADBEEF

0xBEBEDEAD

0xFADEBEAD

0xCAFEBEDF

Channel 1. We write data onto the
Pixel Processor.

AXI-4 Full Peripheral to Memory 4 2

0xEED2DDF7

0xDDDDEED2

0xFDEEDDD2

0xE3FFDDEF

Channel 2. We retrieve data from
the Pixel Processor.

32 bits

...

1024

1
0
2
4

DMA TRANSFER 1

1023

1

Src

...

32 bits

...

1024

1023

1

Dst

...

1024

1023

1

1
0
2
4

32 bits

...

0

1
0
2
4

DMA TRANSFER 2

1

1023

Src

...

32 bits

...

0

1

1023

Dst

...

0

1

1023

1
0
2
4

32 bits

Src

...

0xDEADBEEF

0xBEBEDEAD

0xFADEBEAD

0xCAFEBEDF

32 bits

Pixel Processor
Base Address

...

0xDEADBEEF

0xBEBEDEAD

0xFADEBEAD

0xCAFEBEDF

DMA TRANSFER 3

32 bits

Dst

...

0xEED2DDF7

0xDDDDEED2

0xFDEEDDD2

0xE3FFDDEF

32 bits

Pixel Processor
Base Address

...

0xEED2DDF7

0xDDDDEED2

0xFDEEDDD2

0xE3FFDDEF

DMA TRANSFER 4

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
Tutorial: Embedded System Design for ZynqTM SoC RECRLAB@OU

2 Daniel Llamocca

▪ For a list of available commands, see the file xdmaps.h in the bsp: /libsrc/dmaps_v2_1/src.

▪ We need to specify a variable of type XDmaPs_Cmd. We then clear all the fields of the variable and fill them up with

information such as Source Address, Destination Address, DMA Length.
▪ To start a DMA Transfer, we use the command XDmaPs_Start.

▪ To indicate the completion of a DMA transaction, the DMAC issues interrupts: DMA Done Interrupt (0-7) and DMA Fault
Interrupt. Each Interrupt has its associated Interrupt Service Routine (ISR). For a tutorial on Interrupts, see Unit 9.
✓ We first must connect the ISRs to the Generic Interrupt Controller (via XScuGic_Connect).

✓ We can execute a user-defined function inside an ISR. This needs to be specified before a DMA Transaction
(XDmaPs_Start) by using the function XdmaPs_SetDoneHandler, where we indicate the DMA instance, the channel being

used (0-7), our callback function (e.g. DmaDoneHandler) and our callback reference data (e.g.: Checked[8]).

✓ In the DmaDoneHandler function, we can specify the instructions we want to be executed once an interrupt hits.

▪ For ease of explanation, we provide two examples:

✓ After each DMA transaction, we wait a certain amount of time deemed sufficient for the DMA transfers to finish (e.g.:
printing via UART). This is a simple and inefficient method, but it is helpful to introduce DMA.

✓ We use the DMA interrupt to detect the exact moment the DMA transactions ends. Every DMA channel (0-7) can issue a
‘done’ interrupt. This method is more efficient and it is the preferred method, though it requires significantly more lines
of code to set up and configure the interrupts.

PROCEDURE – NO INTERRUPTS (USING DELAY)
▪ Open the Vivado project of the AXI-4 Full Pixel Processor peripheral (Unit 4 or Unit 7).
▪ Open the SDK Project of the AXI-4 Full Pixel Processor peripheral.
▪ Create a new SDK application.

✓ Go to New → Application Project. On Project Name, you can use: dma_test.

✓ In Board Support Package (bsp): You can create a new one or use a previously generated one.
▪ Copy the following files in the /src folder: pix_dma.c.

▪ Go to File → Generate Linker Script. If required, make sure to assign enough space in the heap/stack for the data. Also,

place the code/heap/stack section in DDR memory (the largest one).
▪ Once the program is compiled, connect the ZYBO (or ZYBO Z7-10) Board to the USB port of your computer.
▪ Download the bitstream on the PL: Xilinx Tools → Program FPGA.

▪ Go to SDK Terminal and connect to the proper COM port.
▪ Select the project dma_test. Right click and select Run As → Launch on Hardware (GDB).

▪ Verification:
✓ DMA Transfer 1: The program prints out destination data: Dst[0] to Dst[1023]. It should match the Source data.

✓ DMA Transfer 2: The program prints out destination data: Dst[0] to Dst[1023]. It should match the Source data.

✓ DMA Transfer 3: Data is written into the Pixel Processor IP. This will be verified in DMA Transfer 4.
✓ DMA Transfer 4: Data is retrieved from Pixel Processor IP. The program prints out destination data: Dst[0] to Dst[3].

It should match the output data from Pixel Processor (with F=1):
Input Output

0xDEADBEEF 0xEED2DDF7

0xBEBEDEAD 0xDDDDEED2

0xFADEBEAD 0xFDEEDDD2

0xCAFEBEDF 0xE3FFDDEF

PROCEDURE – USING DMA CHANNEL INTERRUPTS
▪ Open the Vivado project of the AXI-4 Full Pixel Processor peripheral (Unit 4 or Unit 7).
▪ Open the SDK Project of the AXI-4 Full Pixel Processor peripheral.
▪ Create a new SDK application.

✓ Go to New → Application Project. On Project Name, you can use: dma_test_intr.

✓ In Board Support Package (bsp): You can create a new one or use a previously generated one.
▪ Copy the following files in the /src folder: pix_dma_intr.c.

▪ Go to File → Generate Linker Script. If required, make sure to assign enough space in the heap/stack for the data. Also,

place the code/heap/stack section in DDR memory (the largest one).
▪ Once the program is compiled, connect the ZYBO Board to the USB port of your computer.
▪ Download the bitstream on the PL: Xilinx Tools → Program FPGA.

▪ Go to SDK Terminal and connect to the proper COM port.
▪ Select the project dma_test_intr. Right click and select Run As → Launch on Hardware (GDB).

▪ Verification: This is a similar procedure to the one without interrupts.
✓ Before every transaction, we set Checked[Channel] = 0 and link the callback function DmaDoneHandler and the

callback reference data Checked[8] to the respective ISR via the function XdmaPs_SetDoneHandler.

✓ After every transaction, we use function wait_doneint (Checked, Channel) to wait until the interrupt hits before

proceeding on to next instructions.

